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Abstract

We discuss serial and multicore Relaxed Lepp-Delaunay algorithms for triangulation refinement, based on inserting the centroid
of associated terminal triangles (that share local longest edge in the mesh), and where a neighborhood parameter K is used to
constrain the edge flipping propagation around the terminal edge. Empirical results on a multicore Relaxed Lepp-Delaunay centroid
algorithm, show that an efficient and scalable multicore algorithm was obtained.
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1. Introduction

Longest-edge refinement algorithms for triangulations, based on bisecting the triangles by the longest-edge, were
designed to support the development of adaptive finite element software and to guarantee the construction of refined
triangulations that maintain the quality of the input mesh [1]. Later the longest-edge propagating path (Lepp) con-
cept was introduced by Rivara [2] to design both the Lepp-bisection algorithm (an efficient and simple longest-edge
algorithm) and Lepp Delaunay algorithms for the automatic construction of quality triangulations.

Lepp-Delaunay algorithms combine the Lepp concept and Delaunay insertion of the selected points. Lepp-centroid
algorithm has been studied by Rivara and Calderon [5] and Lepp midpoint algorithms has been studied by Bedregal
and Rivara [3]. A study on multicore Lepp-bisection algorithm was presented in [6].

In this paper we propose a Relaxed Lepp-Delaunay method to refine and improve triangulations, where the delau-
nization step is relaxed by using a parameter K that constrain the edge flipping propagation around the terminal edge.
We present empirical results on a multicore relaxed Lepp-Delaunay algorithm for solving the quality triangulation
problem. This method generalizes the Lepp-Centroid Delaunay method discussed in [5].
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2. Lepp-Delaunay centroid method

An edge E is called a terminal edge [2] in triangulation τ if E is the longest edge of every triangle that shares
E, while the triangles that share E are called terminal triangles [2]. Note that in 2-dimensions either E is shared by
two terminal triangles t1, t2 if E is an interior edge, or E is shared by a single terminal triangle t1 if E is a boundary
(constrained) edge. See Figure 1 where edge AB is an interior terminal edge shared by two terminal triangles t3, t4.

For any triangle t0 of a conforming triangulation τ, the longest-edge propagating path of t0, denoted by Lepp(t0),
is the finite list of increasing triangles t0, t1, t2, ..., tn−1, tn, such that ti is the neighbor triangle of ti−1 on a longest edge
of ti−1, for i = 1, 2, ..., n [2]. Note that in general tn−1, tn are terminal triangles sharing an interior terminal edge.

For improving a triangle t, the first Lepp-Delaunay algorithm [2] repeatedly selects the midpoint of the terminal
edge which is Delaunay inserted in the mesh until the triangle t is refined. Later Rivara and Calderon introduced the
Lepp-Delaunay centroid algorithm [5] where the centroid of the terminal quadrilateral formed by a couple of terminal
triangles is selected for Delaunay point insertion. For an illustration of the centroid algorithm see Figure 1, where for
improving t0, the centroid P of the terminal triangles t3, t4 is Delaunay inserted which produces the triangulation of
Figure 1 (b). Then, for improving t0 (that remains in the mesh), the centroid of the terminal triangles t0, t′1 is inserted,
which destroys t0.
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Fig. 1. Lepp Delaunay (centroid) method.

3. A serial relaxed Lepp-Delaunay algorithm

In this algorithm we use a parameter K that allows to define a neighbor set of triangles NS k that constrain the edge
flipping propagation. In this way, we use a quasi-Delaunay point insertion operation.

Algorithm 1 Relaxed-Lepp-Delaunay Algorithm(τ0, θtol, K)

Input: τ0 initial conforming mesh, threshold angle tolerance θtol and parameter K.
Output: An improved conforming triangulation τ f .
Find S ⊂ τ the set of triangles with smallest angle < θtol.
while S , φ do

Select a triangle t from S .
while t remains in τ do

Find Lepp of t and compute the centroid M of the terminal quadrilateral.
Find set NS K(E).
Insert the centroid M by using the relaxed Lepp-Delaunay point insertion (constrained to NS k(E)).
Update S .

end while
end while

Definition. Given a terminal edge E, for K=0, the neighbor set of triangles NS 0(E) includes the terminal triangles
associated to E. For K > 0, the neighbor set of triangles NS K(E) includes the triangles of NS K−1(E) and its exterior
edge-adjacent triangles (see Figure 2).
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The serial relaxed Lepp-Delaunay algorithm proceeds as follows: for each bad quality triangle t0 to be refined, the
algorithm finds Lepp(t0), the terminal edge E, the centroid M of the terminal triangles and a set NS K(E) over which
the quasi-Delaunay point insertion operation is performed. Triangulations (b), (b), (c) of Figure 2 show the NS K sets
for K = 0, 1, 2. Figure 2 (d) shows the quasi-Delaunay mesh obtained after quasi-Delaunay insertion of M for K=2.
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Fig. 2. Shadow triangles identify NS K (E). (a) NS 0(E) includes the terminal triangles; (b) NS 1(E) includes terminal triangles (NS 0(E)) and their
immediate neighbors; (c) NS 2(E) includes NS 1(E) and their immediate neighbors; (d) After the quasi-Delaunay insertion of centroid M for K=2.

4. Practical behavior of the serial algorithm as a function of K

We used the serial relaxed Lepp-Delaunay algorithm for studying both the evolution of the angle distribution and
the number and percentage of the non-Delaunay triangles obtained in the final mesh for different values of K. Table 1
summarizes these results for θtol = 30o. This includes the size of the meshes, number and percentage of non-Delaunay
triangles and the execution time for different values of K. Note that the final meshes have approximately the same
number of elements (vertices and triangles), but the number and percentage of non-Delaunay triangles in the final
meshes are different. Note that when K=0 the algorithm only inserts the centroid into a couple of terminal triangles
without carrying out edge flipping operations.

Table 1. Final meshes and Percentage of Delaunay triangles for input and final meshes obtained from different values of K, threshold angle 30o.

Vertices Triangles Non-Delaunay Percentage Time (ms)
Triangles (NDT) of NDT

Init Mesh→ 2,999,998 5,999,953 0 0 0

Final mesh, K=0 10,929,370 21,841,912 2,552,911 11.69 330,511
Final mesh, K=1 10,885,375 21,753,875 40,004 0.1839 370,841
Final mesh, K=2 10,867,452 21,718,098 44 0.000203 331,952
Final mesh, K=3 10,864,202 21,711,627 12 0.000055 362,422
Final mesh, K=4 10,863,910 21,711,078 10 0.000046 368,190
Final mesh, K=7 10,863,878 21,711,007 0 0.000000 445158
Final mesh, K=10 10,863,826 21,710,922 0 0.000000 589,493

As expected the percentage of non-Delaunay triangles obtained decreases when the value of K increases. However
this remains very low for K ≥ 3, which suggests that either K=2 or K=3 is a good parameter value.

Table 2 summarizes the distribution of the smallest angles (between 0 and 60 degrees) in triangle percentage for the
initial and final meshes, for K=0,1,2,3,4,7,10. Note that good quality meshes formed by triangles with good internal
angles (threshold 30o) are obtained even when the mesh is not fully Delaunay. Note that even for K=0 all the bad
quality triangles (needle, cap, etc) are eliminated from the mesh.
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Table 2. Distribution (in triangle percentage) of smallest angles for different values of K, θtol = 30o.

Angle distribution (triangle %)
Degrees 0o − 10o 10o − 20o 20o − 30o 30o − 40o 40o − 50o 50o − 60o

Initial Mesh 6.11 16.99 24.37 25.63 9.59 7.32
Final Meshes (triangle %) for different values of K

PPPPPPPK
Degrees

0o − 10o 10o − 20o 20o − 30o 30o − 40o 40o − 50o 50o − 60o

K=0 0 0 0 42.0955 44.6932 13.2113
K=1 0 0 0 36.9587 48.7855 14.2558
K=2 0 0 0 37.0057 48.7315 14.2627
K=3 0 0 0 37.0166 48.7239 14.2595
K=4 0 0 0 37.0170 48.7235 14.2595
K=7 0 0 0 37.0169 48.7235 14.2595
K=10 0 0 0 37.0169 48.7236 14.2595

5. Practical performance of the parallel Relaxed Lepp-Delaunay algorithm

Given an input triangulation τ, a set S ⊂ τ of bad quality triangles and a parameter K. Then for each triangle t in
S , the parallel relaxed algorithm proceeds as follows: (1) Lepp(t), and centroid M of the terminal quadrilateral are
computed; (2) The NS K(E) set is found; (3) If NS K(E) is computed without detecting collisions, then the centroid
M is Delaunay inserted into the mesh. Otherwise, the computation is stopped and the core proceeds to pick up a new
triangle from S . Algorithm 2 summarizes the parallel relaxed Lepp-Delaunay centroid algorithm:

Algorithm 2 Multicore Lepp-Delaunay algorithm

Input: τ0 an initial mesh, threshold angle tolerance θtol, parameter K.
Output: An improved conforming triangulation τ f .
Find S ⊂ τ the set of triangles with smallest angle < θtol.
while S , φ do

Take a triangle t from S .
while t remains in τ do

Find Lepp(t).
Find NS K(E) and compute centroid M of the terminal quadrilateral.
if Collision is detected while computing a Lepp(t) or NS K then

Destroy Lepp(t) and take a new triangle t from S .
else

Lock the triangles of NS K .
Insert the centroid M into the mesh by using relaxed Lepp-Delaunay point insertion.
Update S .

end if
end while

end while

We have used a computer with two Intel Xeon E5-2660 processors (20 physical cores, 10 core per socket) for
testing the algorithm behavior. We used several triangulations of sets of randomly generated points over a rectangle.
The input domain was divided in a grid of rectangles in order to distribute the triangles and the workload between
the threads. Empirical work shows that the multicore algorithms (for K ≤ 3) have good scalable behavior until 20
processors are used,
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In Table 3 and Figure 3 we present results for the meshes of Table 1 (input and final meshes of approximately 6
millions and 21.7 millions of triangles respectively, for θtol = 30o). Table 3 shows the efficiency behavior and Figure
3 shows the speedup behavior.

Table 3. Performance measure: efficiency; threshold angle 30o; Intel Xeon E5550.

Efficiency
K 1P 2P 4P 8P 10P 16P 20P
0 1.0 0,79 0,73 0,68 0,67 0,77 0,66
2 1.0 0,76 0,68 0,64 0,61 0,75 0,64
3 1.0 0,68 0,65 0,61 0,60 0,72 0,60
4 1.0 0,66 0,58 0,53 0,52 0,53 0,44

2P 4P 8P 10P 16P 20P
0

2

4

6

8

10

12

Speedup Intel Xeon E5-2660, 24000 Rectangles
Threshold angle 30°

K0 K2 K3 K4

Number of cores

S
pe

ed
up

Fig. 3. Speedup for K=0,2,3,4, threshold angle 30o. Intel Xeon E5-2660, 2, 4, 8, 10,16 and 20 cores.
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